
from Service-Mess to Service-Mesh

Oxidation 
Partners

Pete LeVasseur

with



uProto-why?



Middleware, why do we care? 
                             We have computers…

MCU

Autosar

SoC

Linux

Security 
GW

SoC

Linux

Mechatronic Vehicle Control & ADAS Security Connectivity UX & Infotainment

SoC

Linux

Android

      QNX

Linux

SoC

Hypervisor

QNX Linux



… now we want to run things!

MCU

Autosar

SoC

Linux

Security 
GW

SoC

Linux

App App

some libs& 
framework

Mechatronic Vehicle Control & ADAS Security Connectivity UX & Infotainment

ç‹çç

SoC

Linux

some libs& 
framework Android

      QNX

ç‹çç

Linux

some libs& 
framework

App App

ç‹çç

SoC

Hypervisor

QNX Linux

ç‹çç
some libs& 
framework

some libs& 
framework

App AppApp App App AppAPP APP App App



This is the value-add to drivers and customers

Where is the customer value, what is just plumbing?

MCU

Autosar

SoC

Linux

Security 
GW

SoC

Linux

App App

some libs& 
framework

Mechatronic Vehicle Control & ADAS Security Connectivity UX & Infotainment

ç‹çç

SoC

Linux

some libs& 
framework Android

      QNX

ç‹çç

Linux

some libs& 
framework

App App

ç‹çç

SoC

Hypervisor

QNX Linux

ç‹çç
some libs& 
framework

some libs& 
framework

App AppApp App App AppAPP APP Ap
p

Ap
p

Business
value

Plumbing



The deal with Apps & Services

MCU

Autosar

SoC

Linux

Security 
GW

SoC

Linux

App App

some libs& 
framework

Mechatronic Vehicle Control & ADAS Security Connectivity UX & Infotainment

ç‹çç

SoC

Linux

some libs& 
framework Android

      QNX

ç‹çç

Linux

some libs& 
framework

App App

ç‹çç

SoC

Hypervisor

QNX Linux

ç‹çç
some libs& 
framework

some libs& 
framework

App AppApp App App AppAPP APP Ap
p

Ap
p

MCU

Autosar

SoC

Linux

Security 
GW

SoC

Linux

Mechatronic Vehicle Control & ADAS Security Connectivity UX & Infotainment

ç‹çç

SoC

Linux

Android

      QNX

ç‹çç

Linux

ç‹çç

SoC

Hypervisor

QNX Linux

ç‹çç

• Apps/Services represent the “vehicle surface” that users experience,
• they are built by very different kinds of organization (departments etc),
• who need to align around a common view of the vehicle,
• and provide long-term continuity of the business value they embody.

BUT: every tech stack brings its own plumbing
(programming model, vehicle view, communication paradigm, etc)



The deal with Plumbing (aka Software Infrastructure)

MCU

Autosar

SoC

Linux

Security 
GW

SoC

Linux

App App

some libs& 
framework

Mechatronic Vehicle Control & ADAS Security Connectivity UX & Infotainment

ç‹çç

SoC

Linux

some libs& 
framework Android

      QNX

ç‹çç

Linux

some libs& 
framework

App App

ç‹çç

SoC

Hypervisor

QNX Linux

ç‹çç
some libs& 
framework

some libs& 
framework

App AppApp App App AppAPP APP Ap
p

Ap
p

• Plumbing is mission critical, but not really differentiating
• it’s ubiquitous, but invisible
• it’s perfectly boring to consumers, but highly attractive to engineers

Plumbing Ʀs tƋe ƭƈrƉeƠt ƆaƫdiƇƞƱe fƒƕ 
Open SƒƲƯce ƇƈƳeloƓƪƈnƗ ƪƬdels!



uProto-what?



How do we want to do ”Apps and Services”? 

MCU

Autosar

SoC

Linux

Security 
GW

SoC

Linux

Service 
Mesh

Mechatronic Vehicle Control & ADAS Security Connectivity UX & Infotainment

ç‹çç

SoC

Android

Linux

Service 
Mesh

      QNX

ç‹çç

Linux

Service 
Meshç‹çç

SoC

Hypervisor

QNX Linux

ç‹çç
Service 
Mesh

Service 
Mesh

App AppApp App App App App App App App App AppApp App

make communication simple and ubiquitous
→ Unified addressing, inter-domain pub/sub, transparent message routing
foster efficient long-term maintenance & evolution
→ Decouple programming model from proprietary, platform-specific libs&protocols
make App & Service development simple
→ Need ecosystem that caters to all kinds of programming languages, protocols, 
etc

Plumbing
needs to:



There exist scores of OSes, communication stacks, middlewares, 
pubsub implementations, transport protocols, etc

We need something on top of 
all of that, providing us with:

● Unified Addressing
● Inter-domain message forwarding
● X-domain subscription tracking
● Cross-domain discovery
● Communication abstraction and 

programming model

→  We need an Open Source 
automotive Service Mesh



uProto-how?



Feature spotlights      

● Unified Addressing
● Inter-domain message forwarding
● X-domain subscription tracking
● Support for multiple programming 

languages and transport protocols
● Early adopter of Eclipse quality process 

initiative

🔦



Unified addressing

uProtocol client libraries (transport protocol adapters)

Inter-domain message forwarding&

https://github.com/eclipse-uprotocol



X-domain subscription tracking

uSub-scri
ption

<<uEntity>>

uSub-scri
ption

<<uEntity>>

uSub-scri
ption

<<uEntity>>

uSub-scri
ption

<<uEntity>>

https://github.com/eclipse-uprotocol



Also: extends to cloud/backend, mobile, etc

App
<<uEntity>>

Service
<<uEntity>>

App
<<uEntity>>++

https://github.com/eclipse-uprotocol

uService

any cloud

Software-defined vehicle 
DevOps toolchain 

[learn.microsoft.com] 

e.g.

https://learn.microsoft.com/en-us/azure/architecture/industries/automotive/software-defined-vehicle-reference-architecture
https://learn.microsoft.com/en-us/azure/architecture/industries/automotive/software-defined-vehicle-reference-architecture
https://learn.microsoft.com/en-us/azure/architecture/industries/automotive/software-defined-vehicle-reference-architecture


So: launching an SDV lighthouse blueprint!

https://github.com/eclipse-uprotocol



uProto-whoa!



Rust usage for Infrastructural Services

● Rust benefits: memory safety, crates ecosystem, cargo build system
● Ready for Automotive? Yes! Ferrocene
● Flipping entire departments overnight to Rust? No…
● Pareto principle: Put Rust into the 20% or so of critical infra to reap 

80% of the benefits for Eclipse uProtocol robustness



Rust uStreamer Route Forwarding API



Rust uStreamer Endpoint Configuration



Rust uStreamer Configuration



uProto-when?



Facts & Status

Languages

Transports

SOME/IP

November 1.6.0-alpha Release:

+



uProtocol project status and tech coverage
Java C++ Rust Python

client library ✔ ✔ ✔ ✔

uStreamer ✔

uSubscription ✔ ✔

uDiscovery ✔

Zenoh adapter ✔ ✔ ✔

MQTT adapter ✔ ✔ ✔

Android Binder 
adapter ✔

SOME/IP adapter ✔ ✔

https://github.com/eclipse-uprotocol

● uProtocol specification and 
API definitions available in 
dedicated repo

● Varying maturity: Java and 
Rust likely ahead

● Additional tooling available: 
e.g. Test Compatibility Kit

● Rust and Java components 
available on bespoke 
registries (crates.io, Maven 
Central)

● Partial implementation of 
traceability requirements  
(up-rust, up-subscription-rust)



Thank you!

 Oxidation 
PartnersPete LeVasseur


