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uProto-why?



Middleware, why do we care? 
                             We have computers…
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… now we want to run things!
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This is the value-add to drivers and customers

Where is the customer value, what is just plumbing?
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The deal with Apps & Services
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• Apps/Services represent the “vehicle surface” that users experience,
• they are built by very different kinds of organization (departments etc),
• who need to align around a common view of the vehicle,
• and provide long-term continuity of the business value they embody.

BUT: every tech stack brings its own plumbing
(programming model, vehicle view, communication paradigm, etc)



The deal with Plumbing (aka Software Infrastructure)
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• Plumbing is mission critical, but not really differentiating
• it’s ubiquitous, but invisible
• it’s perfectly boring to consumers, but highly attractive to engineers

Plumbing Ʀs tƋe ƭƈrƉeƠt ƆaƫdiƇƞƱe fƒƕ 
Open SƒƲƯce ƇƈƳeloƓƪƈnƗ ƪƬdels!



uProto-what?



How do we want to do ”Apps and Services”? 
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make communication simple and ubiquitous
→ Unified addressing, inter-domain pub/sub, transparent message routing
foster efficient long-term maintenance & evolution
→ Decouple programming model from proprietary, platform-specific libs&protocols
make App & Service development simple
→ Need ecosystem that caters to all kinds of programming languages, protocols, 
etc

Plumbing
needs to:



There exist scores of OSes, communication stacks, middlewares, 
pubsub implementations, transport protocols, etc

We need something on top of 
all of that, providing us with:

● Unified Addressing
● Inter-domain message forwarding
● X-domain subscription tracking
● Cross-domain discovery
● Communication abstraction and 

programming model

→  We need an Open Source 
automotive Service Mesh



uProto-how?



Feature spotlights      

● Unified Addressing
● Inter-domain message forwarding
● X-domain subscription tracking
● Support for multiple programming 

languages and transport protocols
● Early adopter of Eclipse quality process 

initiative

🔦



Unified addressing

uProtocol client libraries (transport protocol adapters)

Inter-domain message forwarding&

https://github.com/eclipse-uprotocol



X-domain subscription tracking

uSub-scri
ption
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https://github.com/eclipse-uprotocol



Also: extends to cloud/backend, mobile, etc

App
<<uEntity>>

Service
<<uEntity>>

App
<<uEntity>>++

https://github.com/eclipse-uprotocol

uService

any cloud

Software-defined vehicle 
DevOps toolchain 

[learn.microsoft.com] 

e.g.

https://learn.microsoft.com/en-us/azure/architecture/industries/automotive/software-defined-vehicle-reference-architecture
https://learn.microsoft.com/en-us/azure/architecture/industries/automotive/software-defined-vehicle-reference-architecture
https://learn.microsoft.com/en-us/azure/architecture/industries/automotive/software-defined-vehicle-reference-architecture


So: launching an SDV lighthouse blueprint!

https://github.com/eclipse-uprotocol



uProto-whoa!



Rust usage for Infrastructural Services

● Rust benefits: memory safety, crates ecosystem, cargo build system
● Ready for Automotive? Yes! Ferrocene
● Flipping entire departments overnight to Rust? No…
● Pareto principle: Put Rust into the 20% or so of critical infra to reap 

80% of the benefits for Eclipse uProtocol robustness



Rust uStreamer Route Forwarding API



Rust uStreamer Endpoint Configuration



Rust uStreamer Configuration



uProto-when?



Facts & Status

Languages

Transports

SOME/IP

November 1.6.0-alpha Release:

+



uProtocol project status and tech coverage
Java C++ Rust Python

client library ✔ ✔ ✔ ✔

uStreamer ✔

uSubscription ✔ ✔

uDiscovery ✔

Zenoh adapter ✔ ✔ ✔

MQTT adapter ✔ ✔ ✔

Android Binder 
adapter ✔

SOME/IP adapter ✔ ✔

https://github.com/eclipse-uprotocol

● uProtocol specification and 
API definitions available in 
dedicated repo

● Varying maturity: Java and 
Rust likely ahead

● Additional tooling available: 
e.g. Test Compatibility Kit

● Rust and Java components 
available on bespoke 
registries (crates.io, Maven 
Central)

● Partial implementation of 
traceability requirements  
(up-rust, up-subscription-rust)



Thank you!

 Oxidation 
PartnersPete LeVasseur


